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Final Report

NOOO i4-85-C-2334

This report falls naturally into two parts and is written in that form.

The first deals with fracture, the second with matters relating to metallic

grains.

PART I FRACTURE

The object here has been to develop mathematical models, involving

singular integral equations, for dracks in the presence of plastic deforma-

tion and to use these models so as to predict the stress necessary for

crack propagation.

It is well known that the processes of plastic deformation in the

neighborhood of a crack impedes its advance. It has not been the role of

fracture mechanics to provide an understanding of why this should be, but

rather to give a workable system of prediction of fracture behavior from

certain particular data. To date, considerable success has been achieved

by following this route. However, this success has not been uniform and

present achievement falls short of the desired goals.

This situation has prompted more fundamental work of which that

supported here represents a further stage of advance.

An essential deficiency of fracture mechanics is that the plastic zone at

the tip of a crack in a plastically deformable material is treated simply

as a region in which elasticity is non-linear. This gives rise to a major

conceptual difficulty, the so-called "Rice paradox," namely: that as a

consequence of the need to consider an elastic-plastic continuumni there is
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no force available to provide the surface energy of a crack as it advances.

Thus, fracture mechanics gives an imperfect representation of the

physics of fracture. Again, we note that it does not take accoun~t of the

role of dislocations in achieving plastic deformation, nor does it allow

for the interactions which occur between these dislocations nor for that

between them and the crack.

An immediate consequence of the representation of a plastic zone in

terms of dislocations is the realization that there must be a finite region

surrounding the crack tip which is free of dislocations. This realization

allows the identification of the source of the Rice paradox and it is seen

that it is vital towards a thoroughgoing treatment of fracture to include

such a dislocation-free zone in the analysis.

As a first exercise in this direction, Chang and Ohr analysed the

behavior of a finite planer two-dimensional crack with two plastic zones in

the plane of the crack. Thus, the crack was supposed to lie in the plane

y = 0 in the region -c<x (c with plastic zones in the regions bKlxl a

with a>b~c.

Representing equilibrium in this situation in terms of a singular inge-

gral equation I'] Chang and Ohr [2,3] were able, in particular, to find the

dislocation distribution function and thence the force for crack extension.

The geometry adopted by Chang and Ohr should be appropriate for frac-

ture in modes II or III, but these are not generally situations of technical

interest. This deficiency has in part been remedied in the course of the

present work.

The essential difficulty encountered in extending this approach to more
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realistic geornetrics, namely those in which crack dislocation are skew

one to the other, is that the governing integral equations become much

more complex. This difficulty has necessitated the development of a

method of solution. This method is, of course, new and its development

Is a major component of the results of this research. It is detailed

below.

Skewed D.F.Z. Cracks in Modes One and Three

The complications in the analysis of D.F.Z. cracks are such that when

solutions in closed form are available 12 1 the results can be expressed only

in terms of higher transcendental functions whose significance becomes

transparent only after approximations are made. Accordingly, it is

germane to consider the use of treatments, which while approximate, are

nevertheless quite accurate and allow the analysis to be carried through

and the final result expressed in terms of elementary functions. This

approach has been used previously for the simplest case[ 4 1 where the

crack and its associated plastic zones are colinear. It is here used to

treat the more complicated and physically more realistic situations in

which the plastic zones are skew to the crack plane.

The particular method employed is also applicable to the colinear case

where it is most simple. It is as set out below:

We consider a planar two-dimensional crack -c~x( in a uniform iso-

tropic medium uniformly loaded so as to provide a shear stress a in the

plane of the crack. Plastic zones are supposed to lie in the region b~x~a

and to be represented by continuous distributions of dislocations formed in

the presence of an applied stress in the four straight lines which make
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angles +y and +(r-y) to the plane of the crack. It is supposed that the

operative applied stress in these regions Is a-r, (r>a).

We calculate and solve,

(a) the dislocation distribution g(x), which vanishes at Ixl=b, txl=a and

which is developed in the regions b<lxlIa due to a dislocation dipole

with elements of strength +f (a) located at x = +, a<c;

(b) the magnitude of a uniform stress Ar(a) which must be supposed

present in order that the dislocation distribution exist;

(c) the stress developed in the region -c<x<c by the distribution g(x);

(d) the resulting singular integral equation for the dislocation distri-

bution representing the crack with the constraint that the implied sum

over the elements f(a) gives 2Ar(a) = r.

In cases where the distributions representing the plastic zones are

skew to the crack length the interactions between dislocation elements are

not so simply expressed and this leads to some complications and inaccur-

acy in the analysis. We commence with an examination of these inter-

actions. Referring to Fig. i
8

AC 

FIG. I
Crack Tip Geometry
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we are interested to find the forces acting in the direction OA and OC on

dislocations magnitude X1, X2 located at the points C and D distant

respectively ri and t from the point 0.

We z.. . -V cases, the dislocations are (A) screw and (B) edge.

(A) Screw Dislocation

In this case, the O-B component of the force acting on the dislocation

at D is

F = As X1 X2 cos (/X 2q

where As = pX/27r. From geometry it is readily shown that

AsX1V\2  
+  cosy (1)

Xr 2 + tz +2 cos y

AsX1 X2  + n cos Y
+

(2)

A SX1\ COS_ (Aco _ AXX 2  CO

+ ( +-cosy)

with a fractional error which is greatest when = and 2it(i-cos y)/

(1, +t)2 = i which then underestimates F by a factor which is 25%

when Y = 600.
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(B) Edge Dislocations

Supposing the Burgers vector to be parallel to the lines on which they

are placed, the force which acts along the line of grain between the

dislocations is given by

F= PXI_ 2 cos y = Ae .\IX2 cos y
Fn -2Tr(1-P) - \ d

and the contribution to the force for glide along the line OB is

AeXIX2 COS__C S__Fqcos = Xz cosycos

Additionally, there is a component of force from Fe

Ael\I)2 sin X sin 0
Fe sin € =

There results a total glide force

AeX1\2 cos (y-0)

XTr

On the same basis as that used for screw dislocations we find a glide

force, e.g. (i)

AeXaX 2  os Y C 2c u] s)2

AXX 2 {(cos + sin2y) t2 (COSy + COS..,,siny)}

or



7

_ AeXIX2 (cs + Cos y-cosy+sinZ¥

Tn +

or better

AeXX 2 { So2Y+cOs y (1cos Y) + sin2 y r , U
= AeX V _ +_ (+_(I +_-

X .j2 fcosy + t (cos y - cos 2y)

We are now in a position to proceed with the sequence of calculations

specified above which leads to a determination of the dislocation distri-

bution for the crack. We consider the case of mode III loading and so

screw dislocations.

Distribution Function For Mode III Loadirg

Referred to ordinary coordinates the force acting on a dislocation,

Burgers vector, X2 at a point x = t due to a dislocation at ra = is from

(i):

A X= X2 tCF= A- ~ X { -J t-~a + t-a 12}

Hence to facilitate the calculation we make another approximation. We see

that

S(t-c) '-t4(t+c) (t-c) = (t2-c 2)
with - - -- 2C- - - for azt l -ml -a ra

with error for a plastic zone size A - small compared with the crack
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length (i.e., A/c<) gives an overestimate of the term in P of at most 5%

and partially offsets the underestimate involved in the previous approxima-

tion.

On this basis we calculate the dislocation distribution due to a pair of

dislocations + A located at points x = ±a together with a uniform applied

stress 6r. The equation of equilibrium for this distribution is

Asf(x) dx =6r +AA [ 11 - I~a
As  gX) --- t - a t + a

The distribution is chosen to vanish at each of the end points x = +b, +a.

Following Head and Louat [1] we have

gx (a2 - x ) (x2-b ) -

J D [(a2.t2) (t2-b 2)]f 1 -

_(t2-c2) + 6r - p (t2-c2) dtt t-- a)7 t + a _t (t + a) t-

which rearranged, becomes:

g(x){r t2 (t2-c2) d I
g x) A .1- 2- 2 LI 2(t2 b2)]f 2W 7-1

+& dt

where (i cos y) /c2

Here integration is to be carried out over the union of segments b<Itf~a

and is easily effected by the use of the appropriate contour and the calculus

of residues. We find:
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L(a2_x2)(x2_b2)] a + d 2 (a 2 - C2 ) 1

g (x) = f fa - [(a2a)a2_(ba2 (a- )

provided 14]:
I[a-21t- ] r6 + A A [a + t2(t2 - C2) d IT - t s d t = 0 ;

s = -0, 1, 2, 3.

This is satisfied from consideration of symmetry for s = 0 and s = 2

so that we are left with two conditions associated with cases s = I and 3.

These conditions may be written as:

6r a2 + b2 + apk + afk(a2 +b2 + 4a 2 - 2c 2)
z.

- a3  kp + k (5a' - 4c2 -a2 (c2 - a2) } s 3;

[(a2-a2)(b2-a 2)] f (ar a7

a 26r =-a 3  .kp + k I3a2 2c 2 - a2(c 2 -a2)} s1,

[(a2- 2) (b2 -771

where

k =2AA

We see, for the important range where a/c = 0 (1), that the right hand

sides of these equations are essentially equal. Accordingly, we find that

6r - -2ka (a2 + b2 + 4a 2 -2c 2) 1 (3)
-( + b - 2az)

provided a/c -- 1, We shall see later that this approximation is adequate
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for our purposes.

We now determine the stress, in the plane of the crack, developed by

the dislocations of the distribution g(x). We have, using an approximation

similar to that used before, a force on a dislocation X, at x, directed along

the crack plane, developed from another dislocation X2 located at some

distance t up the skewed slip plane:

F=A XX 2 { C A I it (t2 - c2) (4)

Then using (2) and (3) we have at a point x along the crack a stress

a(x) =-AA fap+ d a2 (a 2 -c 2 ) I
Ta- (a2- )(b2-a2)

D(a2-t2)(b2-t)i + t(t 2 - c2) dt

JD a~, -c- t - x ) JF --~

where integration is again over the union of the intervals -aKt<-b, b<t<a.

Carrying out this integration we have:

a(xa)= 1AA ap+ I d a2 (a2 -c 2)
o - o a2- ) (b2-o2)]j

I + [(a 2-X2) (b2-X2) -- .(a2 -a-,(b2-_ 2)}

xz -a,

Now this is the stress resulting from a single dislocation A located at



711

a. The total stress developed at a point u on the real axis by a disloca-

tion distribution f(a) over the length of the crack is

4%sf (a){fI + a (, a da
AS

Now since the crack constitutes a free surface this stress together with

the applied shear is to vanish.

Then on the basis that the distribution is unbounded at t = +c we have

[4]:

f(u) = 2- [ ] [c2_x,] x -j f[c-, 2 ]f L .f'(a) c(rq, a) dar 2A[c 2-u2] [c --Xu C r

Performing the first Integral and interchanging the order in the second.

this becomes:
i

f(u) 1 fou (a) ap + da')
r[ca2-U2 1 - [(a2) b-2)]

c

[ni C2 )

r~' +x ( (a 2-r) (b2 r?)12 ~c 2 n2) &-q2a) c- 2

t~7, -z a,(-

IC _q da dq$rl-

i2,m1m %lmn., l..mI
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We now introduce the approximation

[(a 2-r?2) (b 2- 2)]i _ ab-krq2 , k = ab - [(a 2-b2) (b2-c2)]

thereby avoiding the complications associated with elliptic integrals. The

error introduced in so doing is estimated (graphically) to be less than 5%

and to be such that a reduction of k by such an amount would tend to

eliminate that error.

integrating in (5) we have

rc 2(6)
f r), u , f(a)fpd a-"+-d a(a

-- V

k+1 C2  f(-k) U2 + 3ab -k
((a2-a -a )] - C C

Then remembering that we will be concerned only with the behavior of f(u)

as u-Pc we simplify matters by writing

(3-k) u2 = 3-k

in (6).

On this basis we then recognize that (5) can be written as

f (u) u - F(a)b,c)

where F(a,b,c) can be evaluated by substituting this expression for fu) in

(6). We get
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ff)! f co

{ rp + d a 2(cr2-C2) k+1 - Pc2  3-k + 3ab -k }dcr
[(a-2- 2 1 b2- 2 1]l

u F(abc) (7)

7r[C2-u2)]j

Thence we have:

F(abc) = a G(a{bc),

where

G (abc)

- f a rdra-c 2 I k+I- qc 2  f3r' + ab] -2k 1da
(a ) [(a2-a2)(b 2 -a2 ] L L c )

Once again, to facilitate integration we use the same approximation

F(a2X2) (b 2)) ab - kX2

and find

G(ab,c) D (8)
k [ab-kc".J

(k+ I - c2 ) (3-k + 3ab - k)c-r
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Then substituting for G(a,b,c) we he,-

aD [ab]{ p + fab I

F(a,b,c) = _-__s
( D(ab] (p + Oab} - k(ab-kC21 )

Here w have neglected terms not involving the factor (ab-bc2)- ' which

gives a large contribution when the dislocation free zone is relatively

small, i.e., when tc(b-c) >>I.

It remains to relate the uniform stress r which acts to oppose dis-

location motion in the intervals b> Ix I<a of the plastic zones. Using (3),

we replace A by f(x)6a and integrate over the length of the crack to obtain

r=4A fa + (a2 + b2 + 4a 2 - 2c2 ) da

J f a' + b1 - 2al
-C

=-4AH a 2  daSJ [c2- 2)j r +b-2 a2)

where

H= P + (a2 + b2 + 4a 2 - 2c2) a - F(abc) (9)

Integrating we have

This completes the solution. This is not exact since it includes a

number of approximations. However, none of these leads individually to
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serious error. Furthermore, they appear to broadly balance in over-

estimating in some cases and underestimating in others so that the net

error should be small, i.,e., a few per cent.

The quantity important in considerations of fracture, namely the crack

extension force G (the square of k), follows immediately from (7) through

the use of the Bilby-Eshelby formula

2
G = rASX lim (u-c) f(u)

-- - U-11C .

Using this result together with (8) and (9), G can be enumerated for

cases of interest.

The Interaction Of Cracks With Cylindrical Microvoids

A characteristic of fracture when significant amounts of plastic

deformation occur near the tips of a crack is the appearance of micro-

voids. These microvoids are roughly circular in cross section and

centered in the plane of the crack. Once these voids are formed further

crack extension appears to involve the coalescence of crack and void.

Some part of this process is achieved by crack motion. It is, therefore,

of interest to examine how the crack extension force (G) is affected by the

presence of the microvoid.

Towards this end, we consider a somewhat simplified two-dimensional

representation in which the crack is confined to a plane and the microvoid

Is a cylinder. Specifically, we suppose the crack to lie in the plane y = 0,

in the range -c<x<c and to be unbounded in the z-direction. We suppose the

crack behaves symmetrically so that microvoids are located at each end.

These are taken to be cylinders of radius r having their axes parallel to
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the z-axis and passing through the points a, o, and -a, o.

In its full generality the determination of G for this geometry is a very

complicated process for which it is improbable that an analytical solution

is available. However, such generality is not essential here where r((c.

Thus, we suppose that the microvoid behaves in the stress field of crack as

though it were subjected to a uniform stress aa having the value of a>,>

developed at the position of the center of the void when the crack alone is

present. The approximation so involved has been investigated and shown to

be viable [6] for the case where the void is replaced by a thin microcrack.

This behavior can be traced to the fundamental feature that the stress

variation over the length of a microcrack is for the main part represen-

table by odd functions of distances referred to the center of the micro-

crack. These odd functions are found to be relatively unimportant in deter-

mining the far-field stresses developed by the microcrack. The reason

for this characteristic can be traced to the requirement that the total

dislocation content of the microcrack be zero. A result of this constraint

is that the far-field stresses exhibit quadrapolar for odd, as opposed to

dipolar for even, functional behavior. Since the same constraint must

apply for microvoids we can expect them to exhibit similar behavior.

Again, it is possible to make a simple examination of the effects of the

stress components representable by even functions. Thus, we write the

stress in the neighborhood of a crack under a uniform stress a as:

[2 = -c2  - (a+t) - .-c1 )
11 [2)-c 2] 1 (a+t) 2-C2]
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Thus, we suppose the void to be centered at q = a and that the variable t

measures distances from that point. Expanding this expression in a Taylor

series we find a mean stress over the interval -A<t(A:

= a fI + c2A2  +3c2 (4a2 +3c 2 ) 4 + -

[a -c 2] 2 -- 4.

For A<- - 7(a-c) and c-a this series is rapidly convergent and 2 nearly

constant and equal to

= Oa

[a2-C2) J
which is the stress calculated from (1) at the position of the center of the

void. For the reasonable case where A = r = a-c/2 the actual mean value

deviates from 2 by only about 3%. Accordingly, we proceed as though

the microvoid were subjected to the uniform stress aa -

Now, if the dislocation distribution which represents the rate of change

of surface displacements over the crack surface is f(x), the stress normal

to the plane of the crack at a point t,o due to the distribution, is given by

-A f(x) ax-. 10
c

Here A = PX/2r(i-P), y is the shear modulus for the material assumed

isotropic, Y is Poisson's ratio and X represents the rmagnitude of a unit

dislocation. The total stress at t,o is then

g(t) = a(t) + a7

where a Is the applied stress and the mean value of g(t) over the length 2r

of the void is
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g (t)dt = g(a) = g(a)
r -c

Again, in the presence of a uniform normal tension r'y = r the stresses

developed by a pair of cylindrical holes radius r centered at x = ta is at

points x,o:

r(x) = r r 2  + 3r4 + r2  + 3r 4  (12)
2 f~ 7i57-x-a) -7) ~T-+V (x+a) Jr

We then suppose that the factor, r = g(a), is known and in the first instance

determine the distribution function which arises from the action of the

stress

0' + r(x)

over the length of the crack.

Following Head and Louat [] we have the distribution

f (x) =- I I [ (C2-t2) (a+r(t) ] dt ..
t7-W [c 2-x2] f"-C,

In the evaluation of this integral, it is helpful to note that we can write

r(x)=r x2 d +x 4 d 3  2a
2 1 Ta 4 5-3 x7j-a2

Substituting for r(x) from (12) in (13) and integrating by considering the

contour integral

S(z-t2) [C+r(z)] dz
Z-X
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we find

f~x x {a - g(a)x 2 (1+ x2  d 2 ) a (2C2 -a 2-x2

7rA[C2_x2] - a 2 (a2_C 2) (a2_x 2)

Then according to (1) the stress at x is given by

j cx 7 - g(a)(x 2) 1 + x2d2  2a (2c'-a2-x2 ) ] dx
[ c C2.x ] 2) 4 -a" (a2-c 2) 1 (a2-x2)2) x-a

Here the evaluation of the contur integral is complicated by the

presence of a triple poles at z = a and a double pole at z = -a. Neverthe-

less, the algebra is straightforward if somewhat lengthy and we find a

total stress

or a + (a) r 2c2 I +r d2] 2a 2-c 2

[a 2-c 2]1 --4 Ta 7 - a --C"2)2

But by definition this is equal to g(a). As we saw above, if a-c/c is

small, we may put g(a). On this basis we find

g(a) 4a2 (a2 -c 2 )2 - r 2c 2 (2a 2-c 2 ) = a a4az(al-cz) [e--2]f

so that

g(a) " a 4a 2 (a 2 -c 2) 2

(a2-c2] (4az (az-c')' - rc'C2i-Cl
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We now write a = c + nr where nr/c<<i and obtain:

g (a) "= aa . I

[a2-c2I]I

and have from (4) and with " = g(a)r2

f(x)_ xo fi- r 2a 2c 2-a2 -x2  a
7rA [C2- ]  (az-) -x= --s

where s = I

The evaluation of G then follows from Bilby and Eshelby's result [5]

G = 7rAX lir (x-c) f(x) 2

T" X-Pc

Substituting we obtain

G nac(I-V) 1-

ir- 2c(i-v) I + T 2

so that G is increased by -- 10% when n = 2 and the cylinder is centered at

a diameter distance from the tip of the crack.
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Surface Displacement and Dynamic Fracture

Surface displacement near the tip of a crack has become of importance

with the use of the so-called caustic method of examining crack behavior.

In this method the lateral surface of a fracture surface is polished to a

mirror finish. The area adjoining a crack tip which is normal to this sur-

face is observed using a system of optics which responds to changes in

inclination of the surface. Such inclinations are induced in the surface as

a consequence of elastic and plastic deformation and result in the appear-

ance of a dark area bordering the crack tip. This dark area or rather its

boundary is the caustic. It has been found experimentally that this curve

approximates to a circle. This description is found to be increasingly apt

as the optics are adjusted so that the caustic curve is generated at dis-

tances from the crack tip where deformation is essentially elastic.

Again, it has been found that in these circumstances that there is a one

to one correspondence between the crack extension force applied (as deter-

mined from KIC) and the radius of the caustic. This allows of a simple

method of measuring this quantity.

This result has been derived theoretically for the case of static cracks

and also for a dynamic crack, providing its speed of advance is signifi-

cantly less than that of sound.

The method of analysis rests on the representation of a crack in mode I

as an array of edge dislocations in the plane of the crack. The distribu-

tion of this array is heavily concentrated toward the tip. Thus, to a first

approximation the crack may be represented as P. single giant dislocation

located at the crack tip.
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Now, adopting a coordinate system in which the axis of the dislocation

is the z-direction while the plane of the crack is represented by y = o, we

have for an infinite system a stress

= z iv

Here p is the shear modulus, v is Poisson's ratio and b is the Burgers

vector of the 6'is.ocation. When such a dislocation terminates at a free

surface it is displaced so as to generate stresses which just cancel those

due to the dislocation. These displacements are accompanied by inclina-

tions which are constant along lines where the stress is constant. It is a

simple matter to show that this is the case along a circle whose center

lies in the plane of the crack and whose circumference passes through its

tip.

Thus, theory accords with experiment in confirming the usefulness of

the caustic approach.
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PART II GRAIN BOUNDARIES AND COSIWALD RIPENING

It has long been recognized that, other things being equal, materials in

which grains are finer are tougher than those where the grains are

coarser. Grain size and grain growth are accordingly germane to the

study of fracture. Furthermore, the rate of growth of grains of a particu-

lar average size is a strong function of the size of particles of another

phase which lie in the grain boundaries. Broadly, for a constant volume

fraction the restraint offered by such particles decreases as the size of the

particles increase through Ostwald ripening. Again, there is evidence

available that the processes of normal grain growth and of Ostwald ripen-

ing (at non-vanishing concentration of second phase) are both stochastic in

origin.

Accordingly these may be regarded as dual topics. Much of what can be

said for one is applicable to the other. We commence with grain growth.

Grain Boundaries

We remark that in a polycrystal not _11 grains are of the same size

and, in fact, grain size is found to be distributed in a way which, remark-

ably, is independent of mean grain size. We now note that such a state of

affairs could be expected if during grain growth (or Ostwald ripening)

grains make excursions in size which are proportional to the mean and

which have equal probability of resulting in an increase as a decrease in

size.

On this basis if the fraction of grains of size lying in the range I to

1+61 be f(1) 61, we find a governing equation
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8f A 8a2 f U 4a)

where A is constant.

For this an appropriate solution is

2

I()= e-' /4At
AP7T

for the case of Ostwald ripening similar considerations hold. These will

be detailed later.

We first consider how this approach accords with the whole body of

evidence relating to grain growth.

In the process of normal grain growth some grains of a polycrystalline

aggregate vanish, without creating voids. The volume thus made available

is distributed among the remaining grains, resulting in an increase in

their mean size; in other words, in grain growth.

Salient features of this phenomenon, and ones with which any accept-

able theory must be in accord, are that the processes are essentially

steady state in that the distribution of grain sizes is invariant with the

amount of growth which has occurred, that the rate of grain growth varies

as t n, where -1 <r<-.5, that individual grains are oriented at random, and

that the grain structure is equi-axed.

Measurements relating to normal grain growth have, for the main part,

been restricted to those which can be made using planar sections. In par-

ticular, these allow the determination of the distribution of grain sizes

and of the number of faces to a grain, the rate of grain growth and Its

dependence on time. Similar results have also been obtained from
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computer modeling. It is required of theory that it give correct qualitive

predictions of the results and also those obtained when the measurements

relate to three dimensions.

A first task in delineating the requirements on theory is to decide just

what is the mathematical form of the distribution of grain size, I. In the

past, this distribution has been fitted to four different functions: lognor-

malt 7 ], the Rayleigh function [8,9], a complex exponential form[10 and

that of Lifshitz and Slyozov iii2]. These functions are respectively:

g(l) = A e- ln2(1/l °)/2a2 ; (15)

f(l) = B 1 e /1)2 (16)

and

h(l) = c eD( [I] "d)2

k(1) = . 2e)6 e -29/2-u, u = I/10 (17)(2-u) +

i is equal to the dimensionality involved, i.e. 2 or 3.

Here A, B, C, D, 10, and 1, are disposable constants.

No one of these equations gives a good fit to all the data. The best

individual fit is probably that of (17) applied to the data given by Aboav

and Langdon [13]. Again, it would seem that this equation is capable,

through adjustments to the parameter D, of giving a reasonably acceptable

fit to all the data. However, since any theoretical justification seems

improbable, it is difficult to accept that this agreement is other than

fortuitous. The difficulty with this form is essential and lies in the fact

that the distribution does not tend to zero at zero grain size (8]

In recent years there has been a growing conviction among many
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workers that the distribution of grain sizes approximates to the lognormal

form. This conclusion usually rests on the following observations. Data

is plotted using special graph paper in which the abscissa Is the cunula-

tive percentage of grains measured. This scale is non-linear and given by

F(x) = fe -(In d/lo) 2/2a 2 dl/l

x

e I n 1/lo)2/2c2 dl

The ordinate is scaled as Inx. Data which obeys a lognormal distribution

then plots as a straight line with slope, a.

Thus, an examination of such plots shows a small but definite deviation

from the straight line configuration. Data are, as is frequently recog-

nized, only approximately lognormal. Consistently, data plotted directly

against the logarithm of the grain size shows significant assyrnetry about

the peak. Again, a direct comparison of the relations (2) and (3) shows

that they can be in essential accord if the constants B, C, D and have

suitable values. It was shown that the two are in reasonable agreement

when a - .5. This suggests that a plot of data which actually follow the

Rayleigh distribution would approximate to a straight line when plotted on

the special graph paper mentioned above. Clearly, the data of Conrad,

Swintowski and Mannan [14] do conform approximate'y to straight lines

which do not deviate far from the curves. Nevertheless, the latter

provide a better fit to the data than do the lines. The standard deviation

in the lognormal representation of these results approximates to .6 and

it is apparent that this is the case for most published material. Thus,
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Schukler"I 5 lists results from eight materials. One of these a-iron, is

described as not not being lognormnal, the remaining seven have standard

deviations which average .59 and which lie in the range 0.468 to 0.674.

We conclude that all experimental results which give standard deviations

of about this amount on the lognormnal approximation will be in reasonable

agreement with the Rayleigh distribution. This is not to say that all

grain size distributions describable as lognormal can also be considered

to be Rayleigh. For example, Rhines and Patterson [16] h~ave found

distributions in which a - 2. Data approximating to a lognormal distri-

bution for standard deviations in this range is not simply describable in

terms of Rayleigh. However, it should be borne in mind that these data

cannot be expected to be representative of normal grain growth since they

were obtained using pre-strains in the range 2 - 30%; values so low as to

give non-uniform nucleation during recrystallization.

Passing now to a consideration of grain shape, that is the distribution

of a number of faces, or in two dimensions, of edges per grain, it is clear

that here the form is lognormal or a very good approximation to it. All

authors, including Hu, who found that his grain size distribution data was

not lognormal, appear to agree on this point. This discrepancy is not at

variance with the several relations which have been found between the

diameter of a grain and the number of its sides:

n = 3 + kI

where n is the average number of sides of per grain of diameter12;

and

N =2 +KL
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where L is the average diameter of a grain with an integral number of

sides 6 . If all grains having N sides were the same size, it would be ex-

pected that grain size and shape would have the same distribution. As it

Is, they should be similar but not identical.

Allowing that there is this difference, no explanation has yet been ad-

vanced as to why the distribution of shape should be lognormal. Toward

such an explanation we recognize that observations of grain shape derive

from planar intersections of three-dimensional ensembles. In contra-

distinction with grain size there is no unique transform relating charac-

teristics in two to those in three dimensions. Thus, the shape observed

as a consequence of a planar intersection with one particular grain

depends not only on the number of its faces but also on their sizes and

orientation with respect to the intersecting plane; that is to say, a multi-

plicity of transforms are operative. Then allowing, as has been shown [ 1,

that if the distribution of grain size is Rayleigh in two dimensions it is

Rayleigh in three also, we see that the distribution of shape in two-

dimensions cannot be Rayleigh if', as seems reasonable, we suppose it is

in three. We now suppose that the observed shape distribution Is a linear

superposition of different and independent distributions each derived from

the operation of a different transform operating on the distribution of

shape in three dimensions. Each of these distributions must accord with

the Euler rules so that the average number of sides to a grain must be 6.

Again, supposing that no grain have less then three sides, we require that

each distribution vanish when n, the number of sides, is 2 and when it is

infinity.
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Now, according to the central limit theorem of probability theory these

characteristics are consistent with the appearance of a lognormnal distribu-

tion and it is to this that we address its appearance.

The Rayleigh distribution was derived on the basis that grain growth is

a stochastic process. Besides the accord between theory and experiment

indicated above, additional support for this approach has recently become

available as the result of computer modeling of grain growth. This sup-

port comes in four ways:

The calculated distribution is in good agreement with the Rayleigh

nearly everywhere; the distribution is found to be the same in three as it

Is in two dimensions. This is critical* since it is a unique property of the

Rayleigh function that it is invariant to the Abelian transform used to

generate the distribution function in three dimensions from that In two, or

vice verse;

Consideration of the trajectories of individual grains in grain size

space shows that size and growth rate are not directly related. Further-

more, as postulated, grains do show changes in the direction of their

growth even though they are much larger than the mean grain size.

Finally, this work also indicates a linear relation between the numnber

N of sides of a grain and the mean diameter L of grains of this class.

Thus,

N =2 +KL

The constant, K was evaluated and found to be 0.23. Assuingr that such a

* Other functions will, however, satisfy this transform to various degrees
of approximation.
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relation exists, the value of K can be evaluated from the Rayleigh distri-

bution on the basis that the average corresponds to grains with six

sides 17 1 . The value predicted in this way is 0.25.

Thus, there is now a significant amount of evidence to support the view

that random walk is of dominating importance in grain growth. According-

ly, we shall examine its basic features so as to determine whether such

behavior should be anticipated. We shall then be concerned to justify the

couchment of resulting analysis in terms of the linear dimensions of the

grains rather than, say, their volurne.

In this connection, the first matter to be settled is whether grain

growth is to be regarded as involving the grains in and of themselves or

simply the inter-faces between them. We are inclined to the view that

since only the boundaries move during grain growth the presence or

absence of the material within the grain,, which makes up the grains,, is

largely, if not entirely, irrelevant. Thus,, we expect the constraint of

constant volume (area in two dimensions) while important and necessarily

included, need not be central to the theory. Rather,, we should include

those constraints which arise from the fact that we are concerned with an

assembly of faces in quasi-equilibrium under the forces due to their

intrinsic energy; that is to say, we take due note of the so-called Euler

['~s17 1

In three dimensions, these require that 3 faces meet In a line and four

such lines meet at a point forming a four-fold node. In two dimensions,

three edges must meet at a point. On this basis and with the additional

constraint that edges at a node are spaced 1200 apart, Von Neumran[ 18 1
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examined the behavior of an n-cornered cell of a two-dimensional bubble

froth. From his determination of the resultant forces, it can be

inferred [1 2 ] that the cell will tend to grow at a rate

dl M Mn-6 (18)art

where M is a constant, n the number of corners (or sides) and 1 a measure

of the linear dimensions of the cell. A comparable expression applicable

to three dimensions has yet to be determined, but it can be expected that a

somewhat similar equation should hold there, perhaps

dl = m-24 (19j,
c~t m

where m is the number of grain edges. The numbers 6 and 24 of eqs. (18)

and (19) are analogous. In two dimensions, an array of grains obeying

modified Euler rules is stable when each grain has six corners~1 ~ In

three dimensions a stable space-filling ensemble of polyhedra is found'

when each has 14 faces, 24 edges and 36 apices. Thus, much if not all

the physics of grain boundary structure essential to our purposes Is encap-

sulated in (18) and (19) and it is important to stress that these equations

relate numbers specifying a topological quantity to a linear dimension.

Allowing that grain growth involves an increase in size of the average

grain of an assembly, it is apparent that such growth'can occur only as a

result of the disappearance of particular grains. We can as direct conse-

quence of the modified Euler conditions Identify these disappearing grains

as tetrahedra (triangles In two dimensions). Thus, a tetrahedron is
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unique among polyhedra in having four apices. Migration of these apices

to a central point leaves, as required for stability, a four-fold node. This

fact, together with (19) would seem to suggest a model in which a grain

with fewer than 24 edges (six corners) would progressively lose them

until it finally disappears, while conversely, grains with more than this

number grow indefinitely. These features together with the seemingly

reasonable assumption that grain diameter is proportional to n forms the

basis for the treatment given by HillertJ 12 1 and expressed by either of the

ecuations:

dl atI) 1 (20)

dn b

where a and b are constants. 1 is the diameter of a six sided grain.

An immediate difficulty with this approach is that it takes no account

of grain contiguity; an omission which we now attempt to rectify. In the

interests of simplicity we restrict the discussion to considerations in two

dimensions. We observe that while von Neumann's analysis indicates

whether a particular grain will tend to grow or to shrink, it does not bear

on the question as to whether or not a particular side will extend or con-

tract, possibly vanishing. This possibility arises becsause each side 1s

(1) shared by two grains and (2) terminates in two grains. Toward a

determination of the consequences of these fca ...-es, we first consider the

well known change in configuration illustrated in Fig. 2.
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FIG. 2
Illustrating a change in the grain configuratior in two dimensions.

Here the merger of the grain corners x and y and their replacement by p

and t is accompanied by the loss of one of one side, by each of the grains A

and B and an equal gain by both C and D. The converse is true if p and t

merge. As demanded by Euler's rule there is not change in the number of

sides in either case. Thus, a grain, for example A, may either gain or

lose a side by one or other of the procedures. A question, crucial in the

assumption expressed in (6) now arises: to what extent is the choice

between these alternatives determined by the characteristics of grain A?

Toward a resolution of this question, we first examine the average be-

havior of an n-sided grain and refer to the grain corner illustrated in

Fig. 2. Here the lines represent the chords joining the ends of grain edges

which are taken to be bent into arcs of circles [18]
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FIG. 3

Grain Corner Geometry

Wie consider the cases where n > 6 so that a, the mean value a, is greater

than 7r/6. We see that as shown, the point 0 is not at a position of

equilibrium and consequently that it will move in response to the line

tensions T directed along the directions OP, etc. as shown. If the result-

ant motion in the direction OS lies within the right angle (Q)OR, the grain

edge will tend to shorten; if it lies within the angle ROT, the edge will

lengthen. Resolving forces, the condition for shortening is easily shown

to be

T sDy > cos ta .
T cos -2T cos a

When rearranged this becomes

cos(y + a) < 2 cos 2a. (21I)

• .,,=,= ,nmmmmw .. !|pT
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This condition is satisfied except when y may be regarded as small. Thus,

when n = 7, a = 64.29 we find that on average the side OQ tends to

shorten unless y<yc, yc =3.9

The most restrictive case occurs when yc = Ymax' the grain in POQ is

i2-sided and yc = 7.50. Similar considerations can be applied to the case

where grains have less than six sides. There, we find, when a takes its

mean value, a, the sides OQ move so as to shorten, for all y.

It is helpful in appreciating the implications of these results to con-

sider the case of a six-sided grain in the special circumstances where each

angle POQ = 2a has the mean value 27r/3. Here (21) is satisfied for all

positive y and fails when y is negative. But at each grain corner, there

are two grain sides to be considered. In these two cases y takes equal and

opposite values. Accordingly, one side shrinks, the other lengthens. Then

since each edge has two ends we see that four possible situations can

arise. In one, both ends tend to move together, in another they move

apart, in the remainder the motions oppose. If then, as seems to be

indicated we assign equal probability to each case we see that the chance

of a side lengthening is just equal to that of its shortening. Thus, as

might be expected, we find that a six-sided grain has equal probility of

tending to gain as to lose sides.

In the case of grain with more than six sides thert, is bias toward the

extension of all sides. The amount of this bias is

6 is the range of E (see Fig. 2) found from an appropriate weighting for
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the frequency of occurence of particular values. Here it is sufficient to

recognize that e9 can lie in the range 600 - 1500 and hence, in view of

(21), that R should be significantly less than 1 in all cases In which n>6.

We conclude, then. that the processes by which grains gain and lose sides

during growth are in the main random rather than directed when n>6.

When, on the other hand, n<6 the situation is reversed. With decreas-

ing n there is then a steadily increasing correlation between a change in

grain size and the numnber of its sides. This is so because (21) is satis-

fied for all y when a takes its mean value a, since &(7r/3. Thus, (21)

can fail and the grains have a tendency to gain a side only at those corners

at which stochastic variation provides a value of a exceeding r/3. Such

excursions can be expected at reasonably common when n = 5 and a= 7r/2

r201
but rare when n = 4 (a = 7r/6). However, Imam,, using a photo-

emission electron microscooe to observe grain boundary motion in titan-

ium has reported a sequence in which a shrinking four-sided grain gained

a side before losing it again.

Thus, we find that when n>6, the path of addition (and subtraction) of

grain sides should be essentially that of a random walker. The dominance

of directed "flow" by stochastic factors is continuously reduced and finally

disappears as n decreases below 6.

The effect of this variation has been examined by Pande"I 9 who has

modeled this system by considering the equation

8f A A32f + Baclf/1).
FT UF av

Here the second term represents the effect of directed flow. This equation
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nas a c'msed form solution. For3, reasonable values c-- the ratio -'/Ath

01stnibution deviates only slightly From that calculated when B 0, name!%'

that of Ravieigh.

We see thnthat the ayleigh isrbtonis to be ex:oected on the bas;S

Of the ado-aerve of grain growth and that Is observed experl-

menal. We cocue hn rmtigreement and ote associa*tec

accords 'hat there is strong ev.,conce to suoort that the mech anism asso-

ciated with thi view . Is indeed operative and controlling In grain growtn.

Ostwald Ripening

::: 1 ae o: -1 we have, again a basis of random excursions:

-2 a.

OX-

whqere x 477r' r Is- the radius of a particle, assumed sohTenical and D is a

rate factor. ; ' s now'. tre C.str",out, on or' surface areas of the oarticles.

Surface area ratner than particle radius is adopted (without prejudice to

*T)e result) as being the more rhyxsical',,y realistic ouantitv.

i :x we reccg!ni-e -nat surface displacements scale with the sizce of'

*.ne surfac-e and thus with r2 while the rate of change of particle radiu-s

varies as / r.

where r and x are the mean values of r and x, and (22) becomes:
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f A xi C2f (23)

where A is a constant.

Then supposing x x x (t) and that

r = Jox (t) dt (24)

(23) becomes

af A a 2f

with a solution

f = x e (25)

Then, rate of growth of is as rl and

dr xi aT1/ ', r3/4a t, ria t1/ 3
CT =

Thus we conclude on this basis that Ostwald ripening proceeds as the one-

third power of the true. This accords with experiment.

Again, expressed in ordinary time units and particle radius, the

distribution becomes

2" rr 3 " )r 4

f= r e EV)/4A

This distribution has been found to accord well with available experimental

evidence.
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